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Abstract-The non-linear. unsteady behaviour of water contained in a vertical cylinder of yellow brass 
when submitted to a horizontal initial thermal gradient is investigated by following the temperature decay 
in the centre of a cylinder. Experimental results are interpreted by means of a theoretical model which 
allows the deduction of equations for temperature, velocity, pressure and density in the nucleus. The new 
equations are compared with those of conduction to provide an evaluation of the convective contribution 
to heat transfer. Our data indicate that when a characteristic dimensionless group which has the form of 
a Rayleigh number reaches a critical value of 1600 + 50, the heat transfer may be described by a pure 

conduction equation. 

1. INTRODUCTION 

CONVECTION has been studied since the last century 
because of its applicative importance, but also to 
understand the involved physical principles. We quote 
here the interesting work of Marangoni [1,2], 
appeared between 1871 and 1878, in which convective 
instabilities due to combined effects of viscosity and 
surface energy are analysed. These effects have recently 
received attention by Striven and Sternling and 
quoted as ‘Marangoni effects’ [3]. 

Between 1890 and 1910 Benard studied the forma- 
tion of structures generated by steady-state convection 
in layers, the already famous ‘Benard cells’ [4]. The 
interpretation of these phenomena has been rather 
satisfactorily given only quite recently when attention 
is confined to the linear stability region [5,6]. 

The quantitative study of the conditions for the 
onset of steady-state convection is based upon the 
solution of the Navier-Stokes equation with bound- 
ary and initial conditions which are particularly 
simple in the case of horizontal thin layers of a liquid 
subjected to vertical gradients of temperature or 
chemical potential [7-241. 

Very recent studies on thick water layers in vertical 
temperature gradients. seem to indicate non-linear 
properties of the convective structures giving rise to 
conduction-convection loops in the 4” range where 
water exhibits a maximum density [25,26]. 

The next step toward the understanding of convec- 
tive phenomena can be achieved by studying non- 
stationary effects which are also important for several 
applications in meteorology, geodynamics and engin- 
eering. 

t To whom correspondence should be addressed. 

It is obvious that a change of the geometry with 
respect to thin layers is necessary because transient 
temperatures must be measured quite precisely and 
over appropriately long time intervals. We have 
chosen a long vertical cylinder (height = 3 diameters) 
because of its simple geometry and because, as we 
shall demonstrate, it allows us to overcome the evident 
difficulties due to non-linear terms in the equations 
by applying a quite simple model based upon 
measurements and calculations already available in 
the literature [27]. 

On the experimental side we note that temperature 
measurements as a function of time are much more 
precise, simpler and cheaper than velocity measure- 
ments which are practically compulsory in thin layers. 

It is obvious that this system is very different from 
a layer. It deals with a horizontal temperature gradient 
which in principle always generates vorticity. How- 
ever, the convective effects below a critical situation 
become so insignificant that we can speak of a ‘quasi- 
conductive system’. 

In this paper we describe the results of our measure- 
ments in a set of cylinders filled with water in the 
temperature range 6-21X and the physical model of 
non-steady convection which generates a ‘universal 
convection curve’. Comparison of this curve with the 
already known ‘universal conduction curve’ [28] gives 
a modified Rayleigh critical number as a theoretical 
physical lower limit of convection which compares 
well with the conventional Rayleigh number deduced 
from calculations in thin layers [S]. 

2. APPARATUS AND MEASUREMENTS 

The apparatus for non-stationary convection and 
pure conduction measurements is very simple and is 
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NOMENCLATURE 

a Mouton and De Roeck’s constant, 1’ scalar velocity in the nucleus 
K*G? Pr- ‘13 v/‘[h(R - S)] W exp[ +- (1.7-0.7 z/h)] 

CV constant volume heat capacity Wl exp( & 1.35) 

eiJ components of the strain tensor Xf inflection point of the universal 

g constant of gravity convection function 
Gr Grashof number, #gAilTh3/v” x; inflection point of the universal 
k level of the liquid contained in the conduction function 

cylinder z level in the liquid measured from top 

Jr first-order Bessel function ,* i normalized level in the liquid, z/h 
K thermal conductivity rnr mth-order zero of the zeroth Bessel 
k unit vector along the : axis function. 
K* pure constant in a 
Nu Nusseh number Greek symbols 

P hydrostatic pressure B thermal expansion coefficient. 
P stress tensor ~l/~(~)](~~/~~ 
Pr Prandtl number, V/X 6 average thickness of the ‘couche limite’ 
R internal radius of the cylinder 6, Kronecker delta function 
Ra Rayleigh number, figATR3/(rX) AT initial temperature difference, IT - T,j 
RC critical Rayleigh number, (.Y~,/.x;)~ V gradient operator 
t time V* divergency operator 

tf time of inflection in convective curves IJ coefficient of viscosity 

r; time of inflection in conductive curves V kinematic viscosity, p/p 
T temperature of the liquid in the nucleus P density of the liquid 

?“o initial temperature x thermal diffusivity coetlicient 

T, surface temperature J/ energy dissipated by viscous forces. 
u velocity in the nucleus 

sketched in Fig. l.? It consists of a closed cylindrical 
yellow brass container with different diameters and 
heights (seven sizes; diameters (cm): 1.5, 1.7, 2.0, 2.2, 
2.5, 3.0, 3.5 and the corresponding heights (cm): 5.2, 
5.5, 6.4,7.2, 7.5,9.5, 11.2) in the centre of which a thin 
thermistor can be situated. The cylinder is filled with 
water at the chosen initial temperature & and allowed 
a suitably iong time to reach a complete thermal 
uniformity in a large water thermostat. The exper- 
iment is then performed by suddenly dipping the 
cylinder into a second thermostat taken at the final 
temperature ‘&. The electrical resistance of the ther- 
mistor is measured and recorded as a function of 
time. 

In order to distinguish convection from conduction 
in the same conditions, in some experiments the 
cylinder is previously filled with 2-3% weight of 
cotton which inhibits any convective flux giving rise 
to pure conduction curves which are satisfactorily 
compared with the Bessel functions derived for a 
purefy conductive cylinder [28]. 

As shown in Figs. 2 and 3, convective and conduc- 
tive graphs for temperature differences of 4 and 10°C 
and various radii have similar trends: both exhibit an 
inflection point, but the slopes are strongly different 

, Inox tubq 

, Thermistor 

Insuiat6on v 
*The first experiments were performed during an edu- 

cational research on water and its properties, carried out for FIG. 1. Apparatus employed for conduction and convection 
insetvice teachers’ training 1291. measurements in water. 
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FIG. 2. Convective and conductive curves with To = 10 ‘C and T, = 6°C. for various diameters of cylinder. 
1 Convection data. ~~ Convection curves calculated by equation (20). 
---Conduction curves calculated by equation (26): 1, la, 1.5 cm diameter: 3,3a, 2,Ocm diameter: 

5,5a, 2.5 cm diameter: 7,7a, 3.5 cm diameter. Both convection and conduction curves have a flexus. 

FIG. 3. Convective and conductive curves with To = 16°C and T, = 6°C. Symbols as in Fig. 2. 

and consequently the characteristic times of tempera- 
ture decay are different. 

Other experiments indicate that this difference is 
still present with a temperature difference of 1’C for 
cylinders whose diameter is between 2.0 and 3Scm. 
while cylinders having diameters below 2 cm become 
subcritical for convection (Fig. 4). 

3. MODEL OF CONVECTION IN A CYLINDRICAL 
VESSEL? 

In order to interpret the curves shown in the 
preceding chapter we build here a model of convection 
using some data and calculations from the work of 
Mouton and De Rotck (in the following quoted as 
MDR) [27]. These refer to measurements performed 
in a vertical cylinder submitted to large temperature 
gradients between 20 and 100°C. MDR describe a 

t This model has been developed by Sonnino for a 
graduation thesis 1301. 

““T 30:2-P 

D (cm) 

FIG. 4. Effect of diameter on convection in cylinders. The 
initial temperature difference was 1°C (between 7 and 6°C). 
Diameters below 2.1 cm give a ratio close to 1 corresponding 

to a quasiconductive system. 
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very important series of data which serve to depict 
the convective flow in the cyhnder as in Fig. 5 where 
the volume is divided into two different regions called 
‘couche limite’, or boundary layer, and ‘noyau central’, 
or the nucleus. 

If we concentrate our attention on the nucleus we 
see that in it the following conditions are fulfilled: 
---at a given height z the tem~rature is constant 

throughout the section of the nucleus: (I) 
-at a given instant t, the velocity L’ is constant 

everywhere in the nucleus. (21 
Using these two conditions and the two conser- 

vation equations: 

where 

(PE = # 

iN.C. + &Z.L. = o 

(conservation of heat) 

(conservation of flow) 

& = heat flux from outside to the liquid 
& = heat flux to increase the tem~rature from 

T, to T, 
r&c. = mass flow in the nucleus 
tnc,r, = mass flow in the couche limite. 

MDR obtain a solution for T in the nucleus of the 
cylinder as a function of time and position (modified 
to account for data): 

C 2BCR(t - t,)v 
3 

3h(R - S)2 
Gr”3Fr-2’3 + C Ii (3) 

and the velocity is: 

c‘ = 2.4 
(R - 6)’ c;~- l/3&.2/3 + “““,; ‘0) vR 1 (4) 

where A, 5 and C are positive constants 

Rc. 5. Model of convection in a vertical cylinder submitted 
to an initial horizontal thermal gradient (warming), accord- 

ing to Mouton and De Rokk [27]. 

In the preceding chapter we have shown that our 
curves of convective cooling of a water cylinder (Figs. 
2 and 3) exhibit an inflection point: on the other hand 
equation (3) has no flexus and fails to fit the data 
especially for small times and small initial temperature 
gradients. 

Furthermore, the method of MDR does not give 
any information about density and hydrostatic press- 
ure behaviour inside the nucleus. 

We note also that in equation (3) the combination 
of Gr and Pr. i.e. the Nusselt number is not the one 
found theoretically, but it is chosen to fit the data as 

Nu = Pr”3G8’36. (5, 

The theoretical calculation of Nu at large values of 
the radius, so that a situation similar to a piane 
vertical wall is approximated, gives the following 
result 

Nu = B’Gr2’5Pr7!15f1 + 0.494Pr”3)-2’5 

where B’ is a pure constant. 
The experimental data taken in conditions of pure 

turbulence indicate the functional form (5) which we 
assume to be correct in what follows. 

Despite its incompleteness, the theory of MDR is 
a brilliant intuition which is extremely important 
simplifying the following vectorial equations describ- 
ing the convective flow in the cylinder, when applied 
to the nucleus: 

d&T) 
P- c”t f pu+O(c,T) = V-(KVT) - pV 

(equation of heat diffusion) 

~~+~~~.v)~=~~+v.P 

(Navier-Stokes equation) 

~+v@+o 

(equation of continuity) 

where (with the sum rule convention): 

I// = 1”(2e$ - 2/3&) 

u-t $ (6) 

(7) 

(8) 

eij = strain tensor = l/2 
i > 

du, dUj 

G+z- ’ I 

P = stress tensor with components: 

P, = -PSij + 2fi@ij - 2/3~i~jje~~ 

tsij = 
1 fori=j 
0 forifj. 

In the nucleus the vectorial equations (6)~(8) can 
be transformed into scalar form according, for 
instance, to a reference frame with the vertical axis 
directed from top to bottom of the cylinder and using 
the same conditions (1) and (2) of MDR. 

We must distinguish two possibilities: 

(i) T, > T, (cooling) 
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The velocity u is opposite to g and its modulus v 
is defined by 

it = -kv. 

(ii) T, < T, (warming) 
The velocity u is 

u = kv. 

We notice that in both cases aT,Qz < 0 because in 
the gravity field the warmer liquid must ascend. 

This Fact implies different signs in the scalar equa- 
tions and in the conditions where z is included. In 
what follows we ascribe the upper sign to cooling and 
the lower to warming. The equations are: 

which are to be solved with the conditions: 

on i? 

7-@,0) = r, + (T, - Qexp +(0.35 - 0.72/~~ 

on u: 

i 

hir v(t) = 0 

iim u(t) = 0 
I -+ n 

on p: 

p(z* 0) = pCT(z, 011 
= Pm? - m - u 
x exp k(O.35 - 0.7z/fr)J 

1’[nJ p(z, r) = P(K) 

implying that at t = 0 &TJ is of the form 

P(73 = PKK1 - BV- n1 

(9) 

(10) 

f12f 

(13) 

(14) 

(15) 

(16) 

(17) 

Equations (12) and (16) deserve attention because 
they are an important turning point of our model. As 
a matter of fact it is extremely difficult to treat the 
nucleus if we assume an infinite temperature gradient 
at t = 0 at the boundary. Our model assumes a very 
rapid formation of the ‘couche limite’ and the nucleus 
(according to MDR data, this happens in a matter of 
a few seconds) and an effective initial distribution 
of temperature which generates the corresponding 
density distribution. The constants are chosen in 
equations (12) and (16) to give the exact values of T, 
and p(T,) in the centre of the cylinder. 

The preceding system of equations and conditions 
can be solved o&t if the term d2T/dz2 is negligible 
compared to aT,??t and to vtYT/dz. This is true 
for velocity c’ >> t0’“4cms-‘, i.e. when convection is 
strongly dominant upon conduction. 

Under these circumstances we have only two equa- 
tions and three unknowns (p, u and 7). However, we 
can solve the system by observing that the MDR 
functions (3) and (4) are particular solutions and that 
the new solution must contain additional terms to 
account for the inflection point and the correct 
conditions (12)-( 17). The general solution is thus 
obtained by separating the z and t variables and 
assuming that T(t) is of the form 

T= T, c Aexp(fqz)Ccr,/(at -c b) (18) 
n 

where A, q, Q, and b are constants to be determined, 
while a is the already known constant by MDR. The 
value of b, according to MDR, is I. 

We notice that the coupled functions 

v = oJ(at + b) 

and 

T = ‘& -I- A expi r qz)/(at e b)” 

(w, = constant) 

for any n provide a solution of the equation 

g,g=o. (19) 

The MDR solution corresponds to the particular 
case of n = 3. 

We have now only to determine the constants A, 
q and c(,. Furthermore we must chose the relevant 
terms of the series in equation (18). This last task 
requires quite tedious mathematics based on the 
following assumptions: 

(4 

W 

(c) 

Equation (18) must be a perturbation of equation 

(3). 
The function must have only one inflection point 
and to be always decreasing for t > 0. 
The conditions (I 2)-( 14) must be satisfied remem- 
bering that from equation (19) at c = 0, v must 
equal zero, i.e. ~T/~tl~~*/~T/~~l~~~ = 0. 

This approach gives the following functions describ- 
ing the unsteady convection in a vertical cylinder 
submitted to a sudden horizontal temperature change 
T,--T,att=O 

T= T, + (r, - r,)wf(t) (20) 

u = - ~~~~)/[0.7~(C)] (21) 

p(z, 1) = P(T,)E1 - B(r, - m!!Wl 122) 

Pk t1 = PK)k f WI 
x [z - p&w - 12ffQ/O.7] + const. (23) 

where M’ = exp[ 2 ( I .‘7 - 0.7:/h)] 

,f‘(r) = CC - 2 exp(T 1.35) - 1]/[2(at + 1)4J 

+ l&t -i- 1)J 

i [4exp(T 1.35) - l]/[Z(at -t- 1P]] 

a = K*Gr’/~Pr-2;3v/[~(~ - 6)]. (241 
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Equation (20) fits well our data (see Figs. 2 and 3) 
witi K* = 0.200 f 0.002. These results are in prin- 
ciple applicable to any fluid and the value of K* 
(which has been determined for water) should not 
depend upon the substance. 

It is noticeable that the density equation (22) is linear 
in T at any time and [euel while the pressure equation 
(23), apart from terms which are very small for rather 
incompressible fluids like water, is p( T,)gz + constant, 
i.e. coincident with the well-known hydrostatic press- 
ure when temperature and density are constant. This 
behaviour agrees well with a reasonable prediction 
about these quantities. 

Let us now focus our attention on the inflection 
point of equation (20) and observe that it provides a 
criterion to determine the effectiveness of convection 
in the centre of a cylinder. In fact if in the experiments 
of Figs. 2 and 3 we compare the time tf, corresponding 
to the inflection point of the experimental curve, with 
the value t;, calculated at the inflection point of the 
conduction curve, and observe that these inflections 
occur at almost the same ordinate regardless of the 
experimental conditions chosen, we can write that 
(within the error limits): 

if t,/t; < 1 the curve is convective 

if t& = 1 the curve is conductive. 

To carry on this comparison on theoretical grounds 
we can write the universal equations of convection 
and conduction in the centre of the cylinder: 

convectiony = w,[( -2~;’ - 1)/[2(K*x + l)‘] 

+ (K*x + 1)-3 + (4w;’ - 1)/[2(K*x + l)‘]] (25) 

where w, = exp( k 1.35) 

m = a 

conduction 4” = 1 [exp( - zzx’)]/[z,J1(z,,,)] (26) 
m=O 

where 

x = at/K* 

x’ = Xt’/(R - 6)‘. 

At the inflection points: 

(27) 

(28) 

xr/x; = a(R - 6)‘t,/(K*&). (29) 

Recalling equation (24) and substituting in equation 
(29) we obtain finally: 

t,/t; = (x,/x;){ vx/[&AT(R - S)3]) 1’3. 

Convection occurs if tr/t; < 1, i.e. 

&AT(R - S)31(vx) > (xrIG3. (30) 

In equation (30) the first member is the well-known 
expression for Ra, the Rayleigh number for layers, 
where the thickness is replaced by the reduced radius 
of the nucleus R - 6. 

This dimensionless group must be larger than 
(x[/x;)~ in order to have significant heat transfer due 
to convection in the centre of the cylinder submitted 

to the described conditions. This critical number R, 

can be calculated from the universal curves (25) and 
(26). We find that R, = (xJx;)~ = 1600 &- 50. This last 
error is due to the approximation of 1% on K*. 

An estimation of R, is also provided by the data 

shown in Fig. 4 where a critical diameter of z 1.7 cm 
is associated with a AT = 1°C. If 6 is assumed to be 
0.3cm, the reduced radius R - 6 is 0.55cm and 
we obtain R, = 1250 while a value of R, = 1600 

corresponds to a reduced radius of 0.60cm. 

4. CONCLUSIONS AND PERSPECTIVES 

This work has several potential applications 
because it solves a problem of convection in the non- 
linear region and in the unsteady state. Our treatment 
may be considered as a method of bridging the gap 
between linear and non-linear systems on the basis 
of the general relationships like the Rayleigh number 
rule which appear to be quite promising. 

Our equations can be applied only to the geometri- 

cal center of the cylinder because they are derived 
under particular initial conditions and in the approxi- 
mation of a model (due to MDR) which divides the 
convective cylinder into a ‘couche limite’ and a ‘noyau 
central’. However, they can be modified to account 
for data taken out of centre. 

We are now working to get more experimental 
information on this system in order to confirm the 
general validity of the model and also to apply it to 
water in the vicinity of 4°C where it presents a density 
maximum. 

In the following papers we shall also discuss other 
effects we observed in the cylinder when submitted to 
various sudden temperature changes. 
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CONVECTION NATURELLE VARIABLE ET NON LINEAIRE DANS UN CYLINDRE 
VERTICAL SOUMIS A UN GRADIENT THERMIQUE HORIZONTAL: MESURES 

DANS L’EAU ENTRE 6 et 21 C. ET MODELE TIIEORIQUE DE CONVECTION 

Risum&-Le comportemenf non lin&re et variable de l’eau dans un cylindre vertical de cuivre jaune 
soumis inifialement a un gradient thermique est &die en suivant la decroissance de temperature au centre 
du cylindre. Les resultats experimentaux sent interpret& au moyen d’un modele theorique qui, a partir 
des equations, fournit la tempbrature. la vi&se. la pression et la densite dam le noyau. Les nouveiles 
equations sont comparees avec celles de la conduction pour kvaluer la contribution de la convection au 
transfert de chaleur. Nos donnees montrent clue lorsqu’un groupe cara&ristique sans dimension qui a la 
forme d’un nombre de Rayleigh atteint une valeur critique de l(iOO+ 50. le transfert de chaieur peut Ptre 

dCcrit par une Equation de conduction pure. 

NICI~TLINEARE. INSTATION~RE FREIE KONVE~TION IN EINEM SENKRECHTEN 
ZYLINDER MIT WAAGERECHTEM TEMPERATWRGRADIENTEN : 

MESSUNGEN IN WASSER ZWISCHEN 6 UND 21 C UND EIN THEORETISCHES 
KONVEKTJONSMODELL 

Zusammenfassung-Das ni~htlin~re, instation~re Verhalten von Wasser in einem senkrechten Mes- 
singzylinder, der einem horizontalen Temperaturgradienten ausgesetzt ist, wird untersucht. indem die 
zeitliche Temperatur%nderung auf der Zylinderachse gemessen wird. Die Versuchsergebnisse werden mit 
Hilfe eines theoretis~hen Modells jnterpretiert, welches die Ableitung von Glei~hungen fur Temperatur, 
Geschwindigkeit, Druck und Dichte im Kern gestattet. Die Ergebnisse aus den neuen Gleichungen wurden 
mit denen der reinen Warmeleitung verglichen, urn eine Aussage iiber den konvektiven Anteil machen zu 
konnen. Unsere Ergebnisse zeigen. dab der Warmetransport allein mit Hilfe der WBrmeleitgleichung 
beschrieben werden kann, wenn eine charakteristische Kennzahl. welche die Form eincr Rayleigh-Zahl 

hat, einen kritischen Wert von 16001SO erreicht. 

HE~~HE~HA~ H~CTA~~OHAPHA~ CBOSOAHAfl KOHBEK4~~ B BEPT~KA~bHOM 
~~~~H~PE C rOP~3OHTA~bHbIM TE~~OBbIM rPAA~EHTOM: H3MEPEHMII AJDI 
BOAbJ B AHAHA30HE TEMIIEPATYP OT 6 A0 21°C M TEOPETWYECKAX MOAEJIb 

KOHBEKHMW 

AHH~Ta~~-~~~e~yeTca ~en~He~noe He~Ta4noHapHoe -reremie Bo,ubi 8 aepTnK~bH0~ ~~Y~HA~ M3 

XeJITOii EaTyHEi IIpii HaWUIbliOM rOp~3O~T~bHOM TetljlOBOM rpaAEfeHTe C ~~Ae~~~me~ MOiur@Ka- 

uMeZi reMnepaTypb1 B uempe II;Anunqpa.3KcnepeNeHTanbHMe pe3ynbTam 06pafiarbmawrcr no reope- 

mrecxoit Monemi, no35onmouieii BbmoaflTb ypasxsemn nmi TehinepaTypbl, CKOPOCTH, ,trasnenna II 
IUOTHOCTW B RApe EOTOKa. 3TN YpaBHeHHa CpaaHnBamTCK C N3BeCTHblMii LtJlS Te~AOnpOBOAHOCT~ C 

UeAbW OUeHHTb BKJIaA KOHBeKUHH B TeWIOIIefWtOC. nOJlyYeHm,Ie Pe3yAbTaTbl llOKa3bIBaK)T. YTO IIpH 

AOCTUXCHAU 6e3pa3MepHbIM KpliTepHeM,KOTOpbIfi HMeeT 4OpMy YHCJla hlea,KpHT~YeCKOrO 3HaYeHWl 


